Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
نویسندگان
چکیده
BACKGROUND AND AIMS Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. METHODS The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4-5 years to either ambient (AC; 385 µmol mol(-1)) or elevated (EC; 700 µmol mol(-1)) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. KEY RESULTS Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. CONCLUSIONS Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.
منابع مشابه
Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment.
We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevate...
متن کاملPhotosynthetic acclimation to rising atmospheric carbon dioxide concentration.
With rising level of CO2 in the atmosphere plants are expected to be exposed to higher concentration of CO2. Since, CO2 is a substrate limiting photosynthesis particularly in C3 plants in the present atmosphere, the impact of elevated CO2 would depend mainly on how photosynthesis acclimates or adjusts to the long term elevated level of CO2. Photosynthetic acclimation is a change in photosynthet...
متن کاملWhich are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photo...
متن کاملIncrease of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age.
Potato plants (Solanum tuberosum cv. Bintje) were grown in open top chambers under ambient (400 microL L(-1)) and elevated CO2 (720 microL L(-1)). After 50 days one half of each group was transferred to the other CO2 concentration and the effects were studied in relation to leaf age (old, middle-aged and young leaves) in each of the four groups. Under long-term exposure to elevated CO2, photosy...
متن کاملStem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone
The aim of this study was to examine the effects of elevated carbon dioxide [CO2] and ozone [O3] and their interaction on wood chemistry and anatomy of five clones of 3-yearold trembling aspen (Populus tremuloides Michx.). Wood chemistry was studied also on paper birch (Betula papyrifera Marsh.) and sugar maple (Acer saccharum Marsh.) seedling-origin saplings of the same age. Material for the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2015